人教A版(2019)数学必修第一册《三角函数的应用》三角函数PPT教学课件(第2课时)
展开
人教高中数学A版必修一《三角函数的应用》三角函数PPT教学课件(第2课时),共23页。
整体感知
问题1 匀速圆周运动、简谐运动和交变电流都是理想化的运动变化现象,可以用三角函数模型准确地描述它们的运动变化规律,其中分别是通过什么方法构建得到其中的函数模型?
答案:匀速圆周运动是依据三角函数定义,直接推理得出变量之间的关系,得到函数模型;简谐运动和交变电流是通过收集数据——画散点图——选择函数模型——求解函数模型的方法建立函数模型.
在现实生活中还有大量运动变化现象,仅在一定范围内呈现出近似于周期变化的特点,这些现象也可以借助三角函数近似的描述.
新知探究
1.问题研究1——气温变化
例1 如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.
(1)求这一天6~14时的最大温差;
(2)写出这段曲线的函数解析式.
问题2 如何根据温度变化曲线得到这一天6~14时的最大温差?
答案:曲线在自变量为6~14时,图形中的最高点的纵坐标减去最低点的纵坐标就是这一天6~14时的最大温差,观察图形得出这段时间的最大温差为20°C.
2.求解模型
问题3 如何根据图象求温度随时间的变化满足的函数关系y=Asin(ωx+φ)+b中A,ω,φ,b的值?为什么?
追问 例1中A与ω的正负未知,那么所求的函数解析式是不是不唯一?(经过分类讨论,完成例1解答后回答这个问题)
3.问题研究2——港口水深
例2 海水受日月的引力,在一定时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报.
(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似值(精确到0.001m).
(2)一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有1.5m的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?
(3)若船的吃水深度为4m,安全间隙为1.5m,该船在两点开始卸货,吃水深度以0.3m/h的速度减少,那么该船在什么时间必修停止卸货,将船驶向较深的水域?
4.建模解模
问题4 我们知道数学建模的过程是:画散点图——选择函数模型——求解函数模型,你能依据这个过程求出水深与时间符合的函数解析式吗?请写出解答过程并进而完成例2(1)的解答.
解:(1)以时间x(单位:h)为横坐标,水深y(单位:m)为纵坐标,在直角坐标系中画出散点图(如图).
根据图象,可以考虑用函数y=Asin(ωx+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出:
A=2.5,h=5,T=12.4,φ=0;
5.模型应用
问题5 例2(2)中,货船需要的安全深度是多少?转化为数学问题,就是在函数的解析式中,哪个变量需要满足什么条件,该船就可以进入港口?从图象上看呢?
答案:货船需要的安全水深为4+1.5=5.5m.
... ... ...
关键词:三角函数的应用PPT课件免费下载,三角函数PPT下载,.PPTX格式;