《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)

立即下载
收藏
  • 2024-12-18
  • 39次
  • 0次
  • 15金币
  • 5ukj
  • 详细信息
    • ID:37603
    • 版本:西师大版
    • 册别:五年级下册
    • 等级:普通
    • 年份:2019
    • 大小:2523 KB
    • 格式:pptx
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图01
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图02
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图03
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图04
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图05
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)-预览图06

预览已结束,下载使用更方便

西师大版数学五年级下册《等式》等式与不等式PPT(第1课时等式的性质与方程的解集)
展开
《等式》等式与不等式PPT(第1课时等式的性质与方程的解集) 第一部分内容:学习目标 掌握等式的性质,会用十字相乘法分解因式 会利用等式的性质解一元一次方程,会用因式分解法解一元二次方程 ... ... ... 等式PPT,第二部分内容:自主学习 问题导学 预习教材P43-P46的内容,思考以下问题: 1.等式的性质有哪些? 2.恒等式的概念是什么? 3.十字相乘法的内容是什么? 4.方程的解集的概念是什么? 新知初探 1.等式的性质 (1)等式的两边同时加上(减去)________数或代数式,等式仍成立; (2)等式的两边同时乘以(除以)同一个________的数或代数式,等式仍成立. [注意]等式性质成立的条件,特别是性质(2)中的“不为零”. 2.恒等式 一般地,含有字母的等式,如果其中的字母取__________时等式都成立,则称其为恒等式,也称等式两边________. 3.方程的解集 一般地,把一个方程________组成的集合称为这个方程的解集. 自我检测 判断正误(正确的打“√”,错误的打“×”) (1)若a=b,则a-c=b-c.(  ) (2)若a=b,则ac=bc.(  ) (3)若ac=bc,则a=b.(  ) (4)x3+1=(x+1)(x2-x+1).(  ) (5)x2+5x+6=(x+2)(x+3).(  ) 下列各式由左边到右边的变形为因式分解的是(  ) A.a2-b2+1=(a+b)(a-b)+1 B.m2-4m+4=(m-2)2 C.(x+3)(x-3)=x2-9 D.t2+3t-16=(t+4)(t-4)+3t ... ... ... 等式PPT,第三部分内容:讲练互动 利用十字相乘法分解单变量多项式 角度一 x2+(p+q)x+pq型式子的因式分解 分解因式: (1)x2-3x+2; (2)x2+4x-12. 【解】(1)如图,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以x2-3x+2=(x-1)(x-2). 规律方法 x2+(p+q)x+pq此类二次三项式的特点是: (1)二次项系数是1; (2)常数项是两个数之积; (3)一次项系数是常数项的两个因数之和. 其分解因式为:x2+(p+q)x+pq=(x+p)(x+q).   角度二 ax2+bx+c型式子的因式分解 分解因式: (1)6x2+5x+1; (2)6x2+11x-7; (3)42x2-33x+6; (4)2x4-5x2+3. 规律方法 对于ax2+bx+c,将二次项的系数a分解成a1×a2,常数项c分解成c1×c2,并且把a1,a2,c1,c2排列如图:,按斜线交叉相乘,再相加,就得到a1c2+a2c1,如果它正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解成(a1x+c1)(a2x+c2),其中a1,c1位于上图中上一行,a2,c2位于下一行.   利用十字相乘法分解双变量多项式 角度一 x2+(p+q)xy+pqy2型式子的因式分解 把下列各式因式分解: (1)a2-2ab-8b2; (2)x+5xy-6y(x>0,y>0); (3)(x+y)2-z(x+y)-6z2; (4)m4+m2n2-6n4. 规律方法 x2+(p+q)xy+pqy2这类二次齐次式的特点是: (1)x2的系数为1; (2)y2的系数为两个数的积(pq); (3)xy的系数为这两个数之和(p+q). x2+(p+q)xy+pqy2=x2+pxy+qxy+pqy2=x(x+py)+qy(x+py)=(x+py)(x+qy).   角度二 ax2+bxy+cy2型式子的因式分解 把下列各式因式分解: (1)6m2-5mn-6n2; (2)20x2+7xy-6y2; (3)2x4+x2y2-3y4; (4)6(x+y)+7z(x+y)+2z(x>0,y>0,z>0). ... ... ... 等式PPT,第四部分内容:达标反馈 1.分解因式x3-x,结果为(  ) A.x(x2-1) B.x(x-1)2 C.x(x+1)2  D.x(x+1)(x-1) 2.已知a+b=3,ab=2,计算:a2b+ab2等于(  ) A.5  B.6 C.9  D.1 3.分解因式a2+8ab-33b2得(  ) A.(a+11)(a-3)  B.(a+11b)(a-3b) C.(a-11b)(a-3b)  D.(a-11b)(a+3b) 4.方程3x(x-2)=2-x的解集为________. 5.把下列各式分解因式: (1)x2+15x+56; (2)6x2+7x-3; (3)x2-6xy-7y2; (4)8x2+26xy+15y2. ... ... ... 关键词:高中人教B版数学必修一PPT课件免费下载,等式PPT下载,等式与不等式PPT下载,等式的性质与方程的解集PPT下载,.PPT格式;

下载与使用帮助

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币。
2、如果首次下载不成功,可再次下载,15天内下载本站同一份资料不重复扣费。
3、如果浏览器启用了拦截弹出窗口,此功能有可能造成下载失败,请临时关闭拦截
4、资料成功下载后不支持退换,如发现资料有严重质量问题,请点击网站右侧 【意见反馈】,如若属实,我们会补偿您的损失。
回到顶部